Synthesis of 4-Aryl-8-fluoro-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinolines and Their Ozonides

by Alexander G. Tolstikov, Rimma G. Savchenko*, Elena S. Lukina, Denis V. Nedopekin, Regina M. Limantceva, Leonard M. Khalilov, Ekaterina S. Mescheryakova, and Victor N. Odinokov

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, pr. Oktyabrya, 141, RU-450075 Ufa (fax: +73472842750; e-mail: rimasavchenko@mail.ru)

4-Aryl-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolines are synthesized by acid-catalyzed (CF₃CO₂H) three-component cyclocondensation of 4-fluoroaniline with aromatic aldehydes and cyclopentadiene. Stable ozonides with (1R*,4S*,5aR*,6S*,11bS*)-configurations are obtained by ozonolysis of corresponding trifluoroacetyl derivatives.

Introduction. – The tetrahydroquinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. The fluorinated heterocyclic compounds possess a broad spectrum of biological activities [1][2]. A special interest is focused on derivatives of 6-fluoroquinolines. Due to interesting chemical or biological properties of F-bearing tetrahydroquinolines, the synthesis of this class of azaheterocyclic compounds has attracted broad interest [3–5].

The aza-Diels-Alder reaction (Povarov reaction; cyclocondensation of aromatic Schiff bases (anils) with electron-rich olefins) provides great opportunities in the formation of the quinoline skeleton [6][7]. One-step three-component reaction of substituted anilines with aldehydes and cyclopentadiene as a dienophile is one of the synthetically most attractive approachs [8]. This method opens a simple route to the synthesis of substituted tetrahydroquinolines [9].

Ozonolytic cleavage of the cycloalkenyl C=C bond in tetrahydroquinoline fused with cyclopentene affords the ozonides of aza-heterocycles [10]. To improve antimalaria or antiviral activity of synthetic peroxides and ozonides, their conjugates containing weakly basic functional groups and heterocycles were obtained [11].

Within this context, we report here a one-pot three-component cyclocondensation of 4-fluoroaniline with aromatic aldehydes and cyclopentadiene to synthesize 6-fluorotetrahydroquinoline annulated with cyclopentene for the following possibility to obtain their stable ozonides.

Result and Discussion. – The condensation of *in situ* generated trifluoroacetate of 4-fluorophenylammonium (prepared by mixing equimolar amounts of amine **1** and 2,2,2-trifluoroacetic acid (TFA)) with an equimolar amount of an aromatic aldehyde (3-chloro-, 2-fluoro-, and 4-(trifluoromethyl)benzaldehyde ($\mathbf{2}-\mathbf{4}$, resp.)) and the fivefold excess of cyclopentadiene under normal conditions occurs rapidly and quantitatively (*Scheme*; *cf.* [8][9]).

Scheme

The H-atoms at the stereogenic centers C(3a), C(4), and C(9b) in the cycloadducts 5-7 are *cis*-oriented relative to each other, as deduced from their spin-spin coupling-constant values (J(3a,9b)=8.8 and J(4,3a)=3.2-3.6 Hz; Table 1). The structure of the compound 5 was clearly confirmed by X-ray diffraction (Fig. 1) and shows a pseudo-equatorial position of the 4-Ar group. Since the spectra of the synthesized compounds 5-7 have convergence and similarity of the main signals, we consider that

13 Ar = $4 - F_3 C - C_6 H_4$

10 Ar = $4-F_3C-C_6H_4$

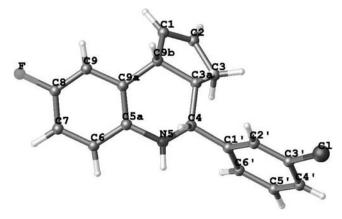


Fig. 1. The molecular structure of $(3aR^*,4S^*,9bS^*)$ -4-(3-chlorophenyl)-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline (5) in the crystal

Table 1. The ¹H- and ¹³C-NMR Data (δ in ppm, J in Hz) of Compounds 5-7

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Posi-	Compound 5		Compound 6		Compound 7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tion	δ(H)	δ(C)	δ(H)	δ(C)	δ(H)	δ(C)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	5.88 (br. s)	133.5	5.86 (br. <i>s</i>)	133.6	5.85 (br. s)	133.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	5.74 (br. s)	130.9	5.77 (br. s)	130.8	5.71 (br. s)	130.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathcal{E}	1.88 (dd, J = 16.0, 8.8),	31.5	1.92 $(dd, J = 16.0, 9.4)$,	31.8	1.82 (dd, J = 16.0, 8.8),	31.3
3.03 $(dd, J = 88, 3.2)$ 45.6 3.25 $(dd, J = 88, 3.2)$ 43.1 3.03 $(dd, J = 88, 3.2)$ 45.9 $(dd, J = 8.8, 3.2)$ 51.4 4.88 $(dd, J = 8.8, 3.2)$ 51.50 $(dd, J = 8.8, 3.2)$ 52.7 $(dd, J = 8.8, 3.2)$ 52.7 $(dd, J = 8.8, 3.2)$ 52.7 $(dd, J = 8.8, 3.2)$ 52.8 $(dd, J = 9.8, 3.4, 4.8)$ 52.8 $(dd, J = 9.8, 3.4, 4.8)$ 53.4 $(dd, J = 8.8, 3.4, 4.8, 4.8, 4.8)$ 53.4 $(dd, J = 8.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8,$		2.66 (ddd, J = 16.0, 9.2, 2.0)		$2.71 \ (ddd, J = 16.0, 9.2, 2.0)$		2.62 (ddd, J = 16.0, 9.2, 2.4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3a	3.03 (dd, J = 8.8, 3.2)	45.6	3.25 (dd, J = 8.8, 3.2)	43.1	3.03 (dd, J = 8.8, 3.2)	45.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4.59 (d, J = 3.2)	57.9	5.00 (br. s)	51.4	4.68 (d, J = 3.2)	58.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5a		141.4		141.7	1	141.1
6.79 ($ddd_J(H,H) = 8.4$, $^{3}J(CF) = 150$) $^{3}J(H,F) = 4.8$) 2.6, $^{3}J(H,F) = 8.4$) 115.1 (d , $^{6}SS (ddd_J/H,H) = 8.4$, $^{1}J(CF) = 18.0$) 2.6, $^{3}J(H,F) = 8.4$) 115.1 (d , $^{6}SS (ddd_J/H,H) = 8.4$, $^{1}J(CF) = 18.0$) 2.8, $^{3}J(H,F) = 8.4$) 156.7 (d , $^{1}J(CF) = 235.0$) 6.86 ($dd_JJ(H,H) = 2.4$, $^{1}J(CF) = 235.0$) 6.86 ($dd_JJ(H,H) = 2.4$, $^{1}J(CF) = 235.0$) 6.86 ($dd_JJ(H,H) = 2.4$, $^{1}J(CF) = 235.0$) 113.2 (d , $^{3}J(CF) = 235.0$) 113.3 (d , $^{3}J(CF) = 235.0$) 113.4 (d , $^{3}J(OF) = 3.8$) 114.9 (d , $^{3}J(OF) = 3.0$) 116.9 (d , $^{3}J(CF) = 2.0$) 116.9 (d , $^{3}J(CF) = 2.0$) 116.9 (d , $^{3}J(CF) = 2.0$) 117.3 (d , $^{3}J(CF) = 3.0$) 117.4 (d , $^{3}J(OF) = 3.0$) 117.5 (d , $^{3}J(CF) = 0.0$) 117.5 (d , $^{3}J(CF) $	9	6.60-6.62 (m)	115.8 (d,	$6.62 (dd, ^3J(H,H) = 8.8,$	115.3 (d,	$6.62 (dd, ^3J(H,H) = 8.8,$	116.8 (d,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$^{3}J(C,F) = 15.0$	$^{4}J(H,F) = 4.8)$	$^{3}J(C,F) = 16.0)$	$^{4}J(H,F) = 4.8)$	$^{3}J(C,F) = 7.0)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6.79 (ddd, J(H,H) = 8.4,	115.1 (d,	6.85 (ddd, J(H,H) = 8.4,	115.1 (d,	6.75 (ddd, J(H,H) = 8.4,	115.0 (d,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2.6, ^{3}J(H,F) = 8.4$	$^{2}J(C,F) = 22)$	$2.8, ^3J(H,F) = 8.4$	$^2J(C,F) = 18.0)$	$2.8, ^{3}J(H,F) = 8.4$	$^{2}J(C,F) = 22)$
6.86 (dd, J(H,H) = 2.4, 13.2 (d, 14.H) = 2.5.0) $6.86 (dd, J(H,H) = 2.4, 113.2 (d, 14.H) = 2.5.0)$ $-1/(C,F) = 9.2)$ $-1/(C,F) = 9.4)$ $-1/(C,F) = 12.0)$ $-1/(C,F) = 1.2.0$ $-1/(C,F) = 9.4)$ $-1/(C,F) = 9.2)$ $-1/(C,F) = 9.2$ $-1/(C,F) = 9.2$ $-1/(C,F) = 9.4$ $-1/(C,F) =$	8	I	156.7 (d,	1	156.8(d,	I	156.7 (d,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$^{1}J(C,F) = 235.0$		$^{1}J(C,F) = 235.0$		$^{1}J(C,F) = 236.0$
${}^{3}(H,F) = 9.2) \qquad {}^{2}(C,F) = 22.0) \qquad J(H,F) = 9.4) \qquad {}^{2}(C,F) = 23.0) \qquad J(H,F) = 9.2)$ $- 125.5 \qquad - 125.5 \qquad - 129.9 (4, -129.9)$	6	6.86 $(dd, J(H,H) = 2.4,$	113.2 (d,	6.89 $(dd, J(H,H) = 2.6,$	113.1 (d,	6.82 $(dd, J(H,H) = 2.8,$	113.6 (d,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{3}J(H,F) = 9.2)$	$^{2}J(C,F) = 22.0$	J(H,F) = 9.4	$^{2}J(C,F) = 23.0)$	J(H,F) = 9.2	$^{3}J(C,F) = 22.0$
$4.13 (d, ^{3}J(9b,3a) = 8.8) 46.6 4.17 (d, ^{3}J(9b,3a) = 8.8) 46.5 4.13 (d, ^{3}J(9b,3a) = 8.8) 46.5 - (144.9 - (144.9 - (144.9 - (124.3) d, - (124.3) d, - (124.3) d, - (160.2) d,$	9a	I	125.5	I	129.9 (d,	I	125.5
$4.13 (d, ^{3}J(9b,3a) = 8.8) 46.6 4.17 (d, ^{3}J(9b,3a) = 8.8) 46.5 4.13 (d, ^{3}J(9b,3a) = 8.8) $ $- 124.3 (d, ^{-}J(9b,3a) = 8.8) 124.3 (d, ^{-}J(9b,3a) = 8.8) $ $- 124.9 - 160.2 (d, ^{-}J(9b,3a) = 8.8) $ $- 150.0 - 160.2 (d, ^{-}J(Pb,3a) = 8.8) $ $- 150.0 - 160.2 (d, ^{-}J(Pb,3a) = 8.8) $ $- 134.6 7.11 - 7.19 (m) ^{-2}J(C,F) = 245.0 $ $- 134.6 7.11 - 7.19 (m) ^{-2}J(C,F) = 4.0 $ $- 7.42 (br. s) 126.8 7.26 - 7.29 (m) ^{-2}J(C,F) = 4.0 $ $- 7.36 - 7.38 (m) 124.8 7.34 - 7.40 (m) ^{-4}J(C,F) = 4.0 $ $- 7.36 - 7.38 (m) 127.5 7.68 - 7.72 (m) ^{-2}J(C,F) = 4.0 $ $- 7.59 (d, J = 8.4) 7.59 (d, J = 8.4) $ $- - - - - - - - - - $					$^{3}J(C,F) = 12.0)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	$4.13 (d, ^3J(9b,3a) = 8.8)$	46.6	$4.17 (d, ^3J(9b,3a) = 8.8)$	46.5	$4.13 (d, {}^{3}J(9b,3a) = 8.8)$	46.6
7.52 (s) 130.0	,	· · · · · · · · · · · · · · · · · · ·	144.9		124.3 (d.		146.7
7.52 (s) 130.0 - $160.2 (d, 1-8.0)$ $\frac{1}{2}(C,F) = 245.0$ $\frac{1}{2}(C,F) = 245.0$ $\frac{1}{2}(C,F) = 245.0$ $116.9 (d, 3/4) = 8.0$ $\frac{1}{2}(C,F) = 4.0$ 126.8 $7.26 - 7.29 (m)$ $\frac{2}{2}(C,F) = 4.0$ $127.7 (d, -127.7 (d, -127.7) = 3.4 - 7.40 (m)$ $\frac{3}{2}(C,F) = 6.0$ $127.3 (m)$ 124.8 $7.34 - 7.40 (m)$ $\frac{4}{2}(C,F) = 4.0$ $127.3 (d, 1-8.0)$ $\frac{4}{2}(C,F) = 4.0$ 127.5 $128.9 (d, 1-8.4)$ 127.5 $128.9 (d, 1-8.4)$ $3/2 (C,F) = 11.0$ $ -$	•		\ : :		$^{2}J(C,F) = 3.0$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,	7.52 (s)	130.0	1	160.2 (d,	7.59 $(d, J = 8.0)$	126.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$^{1}J(C,F) = 245.0$		
7.42 (br. s) 126.8 7.26–7.29 (m) ${}^{2}/(C,F) = 4.0$) 127.7 (d, 1 = 4.0) 127.7 (d, 2 = 4.0) 127.7 (d, 2 = 4.0) 127.3 (m) 124.8 7.34–7.40 (m) ${}^{3}/(C,F) = 6.0$) 127.3 (d, 1 = 8.0) ${}^{4}/(C,F) = 4.0$) 127.5 7.68–7.72 (m) 128.9 (d, 7.59 (d, 1 = 8.4) ${}^{3}/(C,F) = 11.0$)	3,	ı	134.6	7.11-7.19 (m)	116.9 (d,	$7.67 (d, ^3J(H,H) = 8.0)$	125.5
7.26 – 7.29 (m) 127.7 (d, – 126.8 7.26 – 7.29 (m) 3/(C,F) = 6.0) 3 /(C,F) = 6.0) 124.8 7.34 – 7.40 (m) 4 /(C,F) = 4.0) 4 /(C,F) = 4.0) 127.5 7.68 – 7.72 (m) 3 /(C,F) = 11.0) 3					$^{2}J(C,F) = 4.0)$		
7.36–7.38 (m) 124.8 7.34–7.40 (m) ${}^{3}/(C,F) = 6.0)$ 127.3 (d) 7.67 (d, $J = 8.0$) 127.3 (d) 127.5 7.68–7.72 (m) ${}^{4}/(C,F) = 4.0$ 128.9 (d) 7.59 (d, $J = 8.4$) ${}^{3}/(C,F) = 11.0$ – – – – – – – – – – – – – – – – – – –	4	7.42 (br. s)	126.8	7.26-7.29 (m)	127.7 (d,	ı	128.5
7.36–7.38 (m) 124.8 7.34–7.40 (m) 127.3 $(d,$ 7.67 $(d, J=8.0)$ 4/ $(C,F)=4.0$ 7.67 $(d, J=8.0)$ 7.36–7.38 (m) 127.5 7.68–7.72 (m) 3/ $(C,F)=11.0$					$^{3}J(C,F) = 6.0)$		
7.36–7.38 (m) 127.5 7.68–7.72 (m) $^{4}J(C,F) = 4.0$) 128.9 (d, $J = 8.4$) $^{3}J(C,F) = 11.0$) $^{-}$	5,	7.36-7.38 (m)	124.8	7.34 – 7.40 (<i>m</i>)	127.3 (d,	7.67 (d, J = 8.0)	125.5
7.36–7.38 (m) 127.5 7.68–7.72 (m) 128.9 (d, $7.59 (d, J=8.4)$ $^{3}I(C,F) = 11.0)$ – – – – – – – – – – – – – – – – – – –					$^{4}J(C,F) = 4.0)$		
$^{3}I(C,F) = 11.0)$,9	7.36-7.38 (m)	127.5	7.68-7.72 (m)	128.9 (d,	7.59 (d, J = 8.4)	126.9
					$^{3}J(C,F) = 11.0)$		
J(C,F) = ZL	CF_3	1	ı	ı	ı	I	125.0 (q, 125.0)
							$^{1}J(C,F) = 2/2.0$

all obtained 4-aryl-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolines 5 – 7 have the relative configuration (3aR*,4S*,9bS*).

In the next step, it was necessary to protect the N-atom of the tetrahydroquinoline core, because ozonolysis of 5-7 with a free amino group would lead to a complex mixture of unidentified products. N-Trifluoroacetyl derivatives 8-10 were obtained by the reaction of corresponding tetrahydroquinolines 5-7 with $(CF_3CO)_2O$ in the presence of Et_3N in CH_2Cl_2 (*Scheme*).

According to the X-ray data of compound **10** (*Fig.* 2), the H-atoms at its stereogenic centers C(3a), C(4), and C(9b) are also *cis*-oriented with respect to each other. The similarity and convergence of main signals (1 H- and 13 C-NMR) of compounds **8**–**10** evidence that all of them have the relative configuration $(3aR^*,4S^*,9bS^*)$. The 4-Ar group in the crystal had a pseudo-axial orientation due to space barriers of the bulky *N*-trifluoroacetyl group, whereas, in amine **5**, the 4-Ar group is pseudo-equatorial.

Slow inversion between the conformers of heterocycles with the pseudo-axial and pseudo-equatorial 4-Ar group in compounds 8-10 with the bulky CF₃CO group leads to a broadening of signals of H–C(3), H–C(3a), and H–C(9b) (*Table 2*), whereas in 5-7 the inversion is fast, and the signals of corresponding H-atoms have a well-resolved structure (*Table 1*).

The ozonolysis of *N*-trifluoroacetyl derivatives 8-10 in CH_2Cl_2 at 0° occurred at the endocyclic C(1) = C(2) bond and led to the corresponding ozonides 11-13 (*Scheme*).

As noted earlier, according to the X-ray analysis, the formation of ozonides of substituted tetrahydrocyclopenta[c]quinolines occurs regio- and stereoselectively [12]. Instead of broadened signals of C(1) and C(2) in 13 C-NMR spectra of the starting compounds (δ (C) 128.8–130.6 ppm), spectra of the compounds **11–13b** contained narrow signals in the typical field for ozonides (δ (C) 98.7–99.2 ppm) [12][13], confirming the transformation of the C=C bond into a 1,2,4-trioxolane ring. The cross-

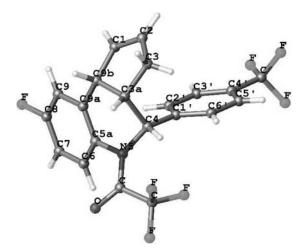


Fig. 2. The molecular structure of 2,2,2-trifluoro-1-{(3aR*,4S*,9bS*)-8-fluoro-3,3a,4,9b-tetrahydro-4-[4-(trifluoromethyl)phenyl]-5H-cyclopenta[c]quinolin-5-yl]ethanone (10) in the crystal.

Table 2. The ¹H- and ¹³C-NMR Data (δ in ppm, J in Hz) of Compounds 8-10

Position	Position Compound 8		Compound 9		Compound 10	
	$\delta(\mathrm{H})$	δ(C)	$\delta(\mathrm{H})$	δ(C)	δ(H)	δ(C)
1	6.15 (br. s)	130.5	6.44 (br. s)	128.8	6.16 (br. s)	130.6
2	5.84 (br. s)	130.0	6.12 (br. s)	129.0	5.85 (br. s)	130.2
3	2.11 (br. s),	35.6	2.09 (br. s),	35.3	2.10 (br. s),	35.6
	2.66 (br. s)		2.64 (br. s)		2.69 (br. s)	
3a	3.63 (br. s)	39.9	3.70 (br. s)	40.1	3.69 (br. s)	39.8
4	4.86 (br. s)	58.4	5.01 (br. s)	50.8	4.96 (br. s)	58.2
5a	ı	137.6	ı	138.9	1	138.6
9	6.67 (d, J = 7.2)	116.4 $(d, ^3J(C,F) = 23.0)$	6.72 (d, J = 7.6)	115.5 $(d, ^3J(C,F) = 23.0)$	6.87 (br. s)	$116.4 (d, ^3J(C,F) = 23.0)$
7	6.88 (br. s)	115.0 $(d, {}^{2}J(C,F) = 17.0)$		115.1 $(d, {}^{2}J(C,F) = 15.0)$		114.2 $(d, {}^{2}J(C,F) = 17.0)$
8	ı	$162.6 (d, {}^{1}J(C,F) = 248.0)$		$162.3 (d, {}^{1}J(C,F) = 248.0)$		$161.8 (d, {}^{1}J(C,F) = 245.0)$
6	(s) 86.9	$114.0 (d, {}^{2}J(C,F) = 17.0)$	(s) 66.9	113.9 $(d, {}^{2}J(C,F) = 14.0)$	7.18 (s)	113.9 $(d, {}^{2}J(C,F) = 17.0)$
9a	ı	127.4	1	127.6	ı	127.4
9b	4.15 (br. s)	46.6	4.12 (br. s)	45.4	4.19 (br. s)	45.6
1,	ı	137.0	1	123.3	ı	139.7
2,	7.17-7.19 (m)	130.7	1	$160.5 (d, {}^{1}J(C,F) = 245.0)$	7.00 (d, J = 8.0)	129.4
3,	ı	134.3	7.02-7.06 (m)	114.8	7.37 (d, J = 8.0)	125.0
,4	7.30-7.34 (m)	127.9	7.16-7.18 (m)	127.6	1	127.9
5,	7.04-7.06 (m)	126.9	7.32-7.35 (m)	127.6	7.37 (d, J = 8.0)	125.2
,9	7.08-7.10 (m)	129.5	7.36-7.37 (m)	130.6	7.00 (d, J = 8.0)	129.5
CF_3	I	I	ı	I	ı	123.8 $(q, {}^{1}J(C,F) = 272.0)$
C=0	I	$156.7 (q, {}^{3}I(C,F) = 37.0)$	I	$155.6 (q, {}^{3}J(C,F) = 37.0)$		$155.5 (q, {}^{3}J(C,F) = 37.0)$
CF_3	I	116.3 $(q, {}^{1}J(C,F) = 287.0)$	I	$119.4 (q, {}^{1}J(C,F) = 287.0)$		$116.5 (q, {}^{1}J(C,F) = 287.0)$

Table 3. The ^{1}H - and ^{13}C -NMR Data (δ in ppm, J in Hz) of Ozonides 11–13

Posi-	Posi- Compound 11		Compound 12		Compound 13	
tion	δ(H)	δ(C)	$\delta(\mathrm{H})$	δ(C)	δ(H)	δ(C)
1	6.32 (br. s)	7.86	6.42 (br. s)	99.2	6.33 (br. s)	98.8
4	5.84 (br. s)	99.1	5.77 (br. s)	99.2	5.83 (br. s)	99.1
S	1.78-1.82 (m),	30.2	1.99-2.15(m),	29.7	1.76 - 1.80 (m),	30.1
	2.28 - 2.32 (m)		2.29 - 2.35 (m)		2.30 - 2.32 (m)	
5a	$3.28 - 3.31 \ (m)$	29.4	3.29-3.33 (m)	31.8	3.33 - 3.37 (m)	29.3
9	5.84 (d, J(6.5a) = 12.0)	58.1	5.00 (d, J(6.5a) = 12.0)	53.3	5.98 (d, J(6.5a) = 12.0)	57.9
7a	I	131.5	ı	134.2	ı	141.9
∞	7.54 – 7.58 (m)	122.7 $(d, ^3J(C,F) = 8.0)$	6.63-6.67 (m)	123.5 $(d, ^3J(C,F) = 8.0)$ 7.58 $(d, J = 8.0)$	7.58 (d, J = 8.0)	116.5 $(d, ^3J(C,F) = 23.0)$
6	7.10-7.12(m)	116.1 $(d, {}^{2}J(C,F) = 23.0)$	$6.85 - 6.89 \ (m)$	115.5 $(d, {}^{2}J(C,F) = 22.0)$	7.00-7.10 (m)	113.9 $(d, ^3J(C,F) = 24.0)$
10	I	$160.5 (d, {}^{1}J(C,F) = 248.0) -$	ı	$162.3 (d, {}^{1}J(C,F) = 242.0)$	ı	$160.2 (d, {}^{1}J(C,F) = 253.0)$
11	7.15(d, J = 8.8)	116.1 $(d, {}^{2}J(C,F) = 23.0)$ 6.95–6.98 (m)	$6.95-6.98 \ (m)$	114.0 $(d, {}^{2}J(C,F) = 24.0)$ 7.17 $(d, J = 8.0)$	7.17 (d, J = 8.0)	113.7 $(d, {}^{2}J(C,F) = 23.0)$
11a		134.6	1	128.3	1	134.4
11b	3.56 (d, J(11b,5a) = 10.8)	38.6	3.54 (d, J(11b,5a) = 10.0) 38.5	38.5	3.59 (d, J(11b,5a) = 10.8) 38.6	38.6
1,		136.8		$124.2 (d, {}^{2}J(C,F) = 3.0)$		138.9
7	6.88-7.02 (m)	130.4	ı	$159.7 (d, {}^{1}J(C,F) = 246.0) 7.54 - 7.58 (m)$	7.54 – 7.58 (m)	130.0
3,		131.1	7.00-7.10 (m)	116.2 $(d, {}^{2}J(C,F) = 22.0)$ 7.58 – 7.62 (m)	7.58-7.62 (m)	125.1
4		127.5	7.11-7.15 (m)	129.9 $(d, ^3J(C,F) = 6.0)$		
S,		128.7	7.26-7.30 (m)	$130.4 (d, ^3J(C,F) = 9.0)$	7.00-7.04 (m)	126.0
,9	7.13-7.17 (m)	129.4	7.32-7.38 (m)	132.2	7.02-7.06 (m)	130.4
CF_3	I	I	ı	I	I	122.5 $(q, {}^{1}J(C,F) = 262.0)$
C=0		$155.5 (q, {}^{2}J(C,F) = 37.0)$		$155.7 (q, {}^{2}J(C,F) = 37.0)$		$155.6 (q, {}^{2}J(C,F) = 34.0)$
CF_3		115.8 $(q, {}^{1}J(C,F) = 286.0)$		$117.9 (q, {}^{1}J(C,F) = 289.0)$		117.9 $(q, {}^{1}J(C,F) = 235.0)$

peak in the HMBC spectrum of ozonide **11** between the signal at $\delta(C)$ 98.7 ppm and that at $\delta(H)$ 3.56 (H–C(11b)) was unambiguously assigned to C(1), as well as a signal at ($\delta(C)$ 99.1 ppm was attributed to C(4). Analogously, the significant signals of the tertiary C-atoms at $\delta(C)$ 99.2 and 99.1 ppm for the ozonide cycle of **12** and **13** (*Table 3*) were assigned to C(4). Vicinal H-atoms at C(5a), C(6), and C(11b) of ozonides **11** – **13** were also *cis*-oriented relative to each other. This was suggested by their spin-spin coupling constants (J(6,5a) = 12, J(11b,5a) = 10.0 - 10.8 Hz). The [M-H]⁻ ion peaks in ESI mass spectra of **11** – **13** provided their molecular weights. According to ¹H- and ¹³C-NMR spectra, and the X-ray diffraction data reported earlier for related ozonides [10][12], the newly obtained ozonides **11** – **13** were identified as ($1R^*,4S^*,5aR^*,6S^*,11bS^*$)-6-aryl-10-fluoro-4,5,5a,6,7,11b-hexahydro-7-(trifluoroacetyl)-1*H*-1,4-epoxy-[1,2]dioxepino[5,4-*c*]quinolines (*Table 3*).

In conclusion, the new 4-aryl-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolines were synthesized by an effective one-pot three-component cyclocondensation of 4-fluoroaniline with an aromatic aldehydes and cyclopentadiene. Their subsequent N-trifluoroacetylation and ozonolysis furnished new stable ozonides with a tetrahydroquinoline core.

This work was financially supported by Russian Fond of Basic Researches (Grant 14-03-00286) and by the Program Presidium of Russian Academy Sciences.

Experimental Part

General. The starting compounds were purchased from *Acros Organics*. Column chromatography (CC) and TLC: silica gel (<0.06 mm) and pre-coated silica gel plates (*Silufol*), resp.; visualization with the I₂ vapor. M.p.: *Boetius* hot-stage microscope. 1D- (1 H and 13 C) and 2D- (COSY, NOESY, HSQC, and HMBC) NMR spectra: of *Bruker Avance-400* spectrometer (400.1 (1 H) and 100.6 MHz (13 C)), equipped with broadband observer probe; all recordings were set up with standard *Bruker* methods; chemical shifts in ppm with TMS as the internal standard. Electrospray ionization (ESI) MS: of HPLC mass spectrometer *LCMS-2010EV* (*Shimadzu*) in the negative-ion mode at the corona discharge needle ionizing electrode and ionizing cap potential of 4.5 kV and -3.5 kV, resp.; the temp. and voltage of the interface capillary under APCI (ESI) conditions, 230° and 5 (25) to -5 (-25) V, resp.; the nebulizer gas (N₂) low rate, 0.5 (1.5) l/min; the high-frequency lenses (Q-array) voltage, 5 to -5 V; sample soln. (direct syringe sample inlet) under APCI (ESI) conditions, in MeOH (MeCN); mobile phase, MeOH (MeCN/H₂O, 75/25); the mobile phase flow rate, 20 (50) μl/min. Elemental analyses: *Carlo Erba EA-1108 CHNS-O* analyzer.

X-Ray Crystal-Structure Determination. Single crystals of **5** and **10** were grown from hexane/AcOEt 1:1 at r.t. X-Ray diffraction data were collected on a X-Calibur E os diffractometer with graphite monochromated Mo K_a radiation (λ 0.71073 Å). Collection and processing of data was performed by using the program CrysAlis^{Pro}, Oxford Diffraction Ltd., Version 1.171.36.28. The structure was solved by direct methods as implemented in the program SHELXS-97 [14]. The refinement was carried out using SHELXL-97 [15]. The structure was refined by a full-matrix least-squares technique using anisotropic thermal parameters for non-H-atoms and a riding model for H-atoms. The X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Center (CCDC).

Crystal Data of **5**. $C_{18}H_{14}FCIN$, M_r 300.77, triclinic, $P\bar{1}$ (No. 2), a=9.2503(11) Å, b=9.7262(12) Å, c=9.9834(14) Å, $\alpha=114.029(13)^\circ$, $\beta=104.198(12)^\circ$, $\gamma=104.749(11)^\circ$, V=728.81(16) Å³, T=293.(2) K, $D_{calc}=1.371$ mg/mm³, Z=2; reflections collected, 5244; independent reflections, 3685 (R(int)=0.0147), R=0.047, $R_w=0.162$; goodness-of-fit, 0.915; CCDC-970716.

Crystal Data of **10**. $C_{21}H_{14}NOF_7$, $M_r = 410.33$, triclinic, $P\bar{1}$ (No. 2), a = 9.5321(8) Å, b = 10.3404(8) Å, c = 10.8512(11) Å, $\alpha = 117.330(9)^\circ$, $\beta = 100.176(8)^\circ$, $\gamma = 91.626(7)^\circ$, V = 927.86(14) Å³,

T=293.(2) K, $D_{\rm calc}=1.469$ mg/mm³, Z=2; reflections collected, 4387; independent reflections, 3099 ($R({\rm int})=0.0091$), R=0.047, $R_{\rm w}=0.137$; goodness-of-fit 1.058; CCDC-964374. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General Procedure of Synthesis 4-Aryl-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolines 5–7. CF₃COOH 0.23 ml (3 mmol) was added to a soln. of 4-fluoroaniline (1, 0.38 ml, 3.0 mmol) in anh. MeCN (20 ml), followed by an addition of freshly distilled cyclopentadiene (1.23 ml, 15 mmol) at 0 and aldehyde 2 (3 or 4) (3 mmol). The mixture was stirred for 0.5 h until starting 1 disappeared (TLC monitoring, hexane/AcOEt 3:1). The solvent was evaporated, and the residue was diluted with sat. aq. NaHCO₃ and extracted with AcOEt. The org. layer was concentrated and the residue was subjected to CC (hexane).

rel-(3aR,4S,9bS)-4-(3-Chlorophenyl)-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline (5). Yield: 80%. R_f (hexane/AcOEt 3:1) 0.69 . M.p. 88 – 90° (from hexane). 1H - and 1S C-NMR: see *Table 1*. MALDI-TOF-MS: 300 ($M+H^+$). Anal. calc. for $C_{18}H_{15}CIFN$ (299.77): C 72.12, H 5.04, N 4.67; found: C 72.32, H 5.21, N, 4.76.

rel-(3aR,4S,9bS)-8-Fluoro-4-(2-fluorophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline (**6**). Yield: 86%. R_f (hexane/AcOEt 3:1) 0.62. M.p. 60 – 62° (from hexane). 1 H- and 1 C-NMR: see Table 1. MALDI-TOF-MS: 283 ([M] $^+$). Anal. calc. for $C_{18}H_{15}F_2N$ (283.32): C 76.31, H 5.34, N 4.94; found: C 76.48, H 5.26, N 4.73.

rel-(3aR,4S,9bS)-8-Fluoro-3a,4,5,9b-tetrahydro-4-[4-(trifluoromethyl)phenyl]-3H-cyclopenta[c]-quinoline (7). Yield: 96%. R_f (hexane/AcOEt 3:1) 0.70. M.p. 74–76° (from hexane). 1 H- and 1 C-NMR: see *Table 1*. MALDI-TOF-MS: 332 ([M-H]+). Anal. calc. for $C_{19}H_{15}F_4N$ (333.32): C 68.46, H 4.54, N 4.20; found: C 68.98, H 4.58, N 4.33.

General Procedure for the Synthesis of 4-Aryl-8-fluoro-3,3a,4,9b-tetrahydro-5H-cyclopenta[c]qui-nolin-5-yl]-2,2,2-trifluoroethanones 8-10. (CF₃CO)₂O (0.34 ml, 2.4 mmol) and 0.33 ml (2.4 mmol) of Et₃N were added to a soln. of 2.0 mmol of 5 (6 or 7) in 10 ml of CH₂Cl₂. The mixture was stirred, until the starting was completely consumed (TLC), and poured into cold H₂O (5 ml). The product was extracted with CH₂Cl₂ (20 ml), and the extract was washed with a sat. aq. NaHCO₃ and then NaCl. The org. layer was concentrated, and the residue was subjected to CC (hexane).

rel-1-[(3aR,4S,9bS)-4-(3-Chlorophenyl)-8-fluoro-3,3a,4,9b-tetrahydro-5H-cyclopenta[c]quinolin-5-yl]-2,2,2-trifluoroethanone (8). Amorphous. Yield: 97%. $R_{\rm f}$ (hexane/AcOEt 3:1) 0.61. $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: see *Table 2*. MALDI-TOF-MS: 418 ([M + Na] $^{+}$). Anal. calc. for $C_{20}H_{14}ClF_4NO$ (395.78): C 60.69, H 3.57, N 3.54; found: C 60.62, H 3.35, N 3.65.

rel-2,2,2-Trifluoro-1-[(3aR,4S,9bS)-8-fluoro-4-(2-fluorophenyl)-3,3a,4,9b-tetrahydro-5H-cyclopenta[c]quinolin-5-yl]ethanone (9). Amorphous Yield: 97%. $R_{\rm f}$ (hexane/AcOEt 3:1) 0.60. $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: see Table 2. MALDI-TOF-MS: 378 ([M-H] $^{\rm -}$). Anal. calc. for $C_{20}H_{14}F_{5}NO$ (379.32): C 63.32, H 3.72, N 3.69; found: C 63.53, H 3.85, N 3.74.

rel-2,2,2-Trifluoro-1-{(3aR,48,9bS)-8-fluoro-3,3a,4,9b-tetrahydro-4-[4-(trifluoromethyl)phenyl]-5H-cyclopenta[c]quinolin-5-yl]ethanone (**10**). Yield: 95%. R_f (hexane/AcOEt 3:1) 0.61. M.p. 90 – 92° (from hexane). 1 H- and 1 C-NMR: see *Table 2*. MALDI-TOF-MS: 430 ([M+H] $^+$). Anal. calc. for $C_{21}H_{14}F_7NO$ (429.33): C 58.75, H 3.29, N 3.26; found: C 58.65, H 3.25, N 3.34.

General Procedure for the Synthesis of 1-[6-Aryl-10-fluoro-1,4,5,5a,6,11b-hexahydro-7H-1,4-epoxy[1,2]dioxepino[5,4-c]quinolin-7-yl]-2,2,2-trifluoroethanones $\mathbf{11}-\mathbf{13}$. The O_2/O_3 mixture (the ozonator productivity was 30 mmol O_3/h) was passed through a soln. of $\mathbf{8}$ (9 or $\mathbf{10}$) (1.5 mmol in CH_2Cl_2 (20 ml)) at 0° with stirring, until the starting compound disappeared (ca. 3 min, TLC monitoring (CHCl₃)). The mixture was purged with Ar and concentrated. The residue was subjected to CC (CHCl₃).

rel-1-[(1R,4S,5aR,6S,11bS)-6-(3-Chlorophenyl)-10-fluoro-1,4,5,5a,6,11b-hexahydro-7H-1,4-epoxy[1,2]dioxepino[5,4-c]quinolin-7-yl]-2,2,2-trifluoroethanone (11). Yield: 65%. M.p. $90-92^{\circ}$ (from hexane). 1 H- and 13 C-NMR: see *Table 3*. ESI-MS: 443 ([*M*]⁺).

rel-2,2,2-Trifluoro-1-[(1R,4S,5aR,6S,11bS)-10-fluoro-6-(2-fluorophenyl)-1,4,5,5a,6,11b-hexahydro-7H-1,4-epoxy[1,2]dioxepino[5,4-c]quinolin-7-yl]ethanone (12). Yield: 68%. M.p. $115-116^{\circ}$ (from hexane). 1 H- and 13 C-NMR: see *Table 3*. ESI-MS: 426 ([M-H] $^{-}$).

rel-2,2,2-Trifluoro-1-{(1R,4S,5aR,6S,11bS)-10-fluoro-1,4,5,5a,6,11b-hexahydro-6-[4-(trifluorome-thyl)phenyl]-7H-1,4-epoxy[1,2]dioxepino[5,4-c]quinolin-7-yl}ethanone (13). Yield: 60%. M.p. 49–51° (from hexane). 1 H- and 13 C-NMR: see *Table 3*. ESI-MS: 476 ([M-H] $^{-}$).

REFERENCES

- [1] V. A. Petrov, 'Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications', John Wiley & Sons, Inc., Hoboken, USA, 2009.
- [2] R. Filler, R. Saha, Future Med. Chem. 2009, 1, 777.
- [3] A. R. Ronald, D. E. Low, 'Fluoroquinolone Antibiotics', Birkhäuser Verlag AG, Basel, 2003.
- [4] M. S. T. Makki, D. A. Bakhotmah, R. M. Abdel-Rahman, Int. J. Org. Chem. 2012, 2, 49.
- [5] P. C. Sharma, A. Jain, S. Jain, Acta Pol. Pharm. Drug Res. 2009, 66, 587.
- [6] L. S. Povarov, Usp. Khim. 1967, 36, 1533.
- [7] V. A. Glushkov, A. G. Tolstikov, Usp. Khim. 2008, 77, 138.
- [8] P. A. Grieco, A. Bahsas, Tetrahedron Lett. 1988, 29, 5855.
- [9] A. S. Kiselyov, L. Smith II, R. W. Armstrong, Tetrahedron 1998, 54, 5089.
- [10] A. G. Tolstikov, R. G. Savchenko, D. V. Nedopekin, S. R. Afon'kina, E. S. Lukina, V. N. Odinokov, Izv. Akad. Nauk. Ser. Khim. 2011, 60, 153.
- [11] G. A. Tolstikov, A. G. Tolstikov, O. V. Tolstikova, Usp. Khim. 1996, 65, 836.
- [12] S. Kawamura, R. Takeuchi, A. Masuyama, M. Nojima, K. J. McCullough, J. Org. Chem. 1998, 63, 5617.
- [13] A. G. Tolstikov, L. M. Khalilov, R. G. Savchenko, D. V. Nedopekin, V. A. Glushkov, G. F. Krainova, I. V. Glukhov, M. Y. Antipin, V. N. Odinokov, *Izv. Akad. Nauk. Ser. Khim.* 2009, 58, 1929.
- [14] G. M. Sheldrick, Acta Cryst., Sect. A 2008, 64, 112.
- [15] G. M. Sheldrick, SHELXL-97 Program for the Solution and Refinement of X-Ray Crystal Structures, University of Göttingen, 1997.

Received December 25, 2013